BICARBON FAMILY
Distinguished details make the dynamic difference

Bileaflet mechanical heart valve solutions to meet patient and surgeon needs
Detailed options for detailed benefits

LivaNova Bicarbon mechanical heart valves have been specifically designed to offer an utmost advanced solution to patients undergoing cardiac valve replacement.

Featuring many distinguished details, Bicarbon valves provide top hemodynamic performance combined with proven safety and durability. The benefits of its innovative design are reflected in the excellent clinical outcomes documented in scientific literature across over 25 years of clinical use.

Bicarbon mechanical valves feature the exclusive LivaNova Carbofilm™ coating technology which enhances hemo and biocompatibility.

Innovative design, innovative choice of materials and a long track of proven clinical results make of this valve the best choice looking for an advanced solution backed by compelling long term data.

The Bicarbon range can boast excellent clinical results in over 25 years of clinical use. The outstanding design features offer excellent hemodynamic performance, optimal thromboresistance, ease of implant and proven safety and durability.
BICARBON FAMILY

Detailed safety and durability

Detailed Hemodynamics

Detailed Thromboresistance

Detailed performance for excellent clinical outcomes
Bicarbon's distinguished details make the difference when it comes to hemodynamic performance

Detailed choice of materials

LivaNova Bicarbon is the only valve in the market featuring a Titanium housing coated with Carbofilm™. Titanium is a highly biocompatible material with twice the structural stability of commonly used Pyrolite Carbon. This allows for a slimmer housing thus maximizing the area available to the blood flow.

The LivaNova proprietary Carbofilm™ coating applied both to the Titanium housing and the sewing cuff, enhances hemocompatibility minimizing the risk for pannus formation and favoring a gentle tissue ingrowth that prevents perivalvular leaks.1,2,3

Detailed Design

Not only the detailed choice of materials but also the utmost innovative design is key to Bicarbon’s top hemodynamic performance. Unique among mechanical heart valves, Bicarbon features curved leaflets specifically engineered to achieve an even flow distribution downstream. This leads to several major benefits to the patient:4,5

- minimum turbulence which avoids blood stasis and thus the risk for thrombus formation
- low pressure gradients for optimal hemodynamic performance
- reduced energy loss for an efficient functioning with a benefit for cardiac workload

Also the special aerofoil profile of the housing, which gently decreases in width from the inflow towards the outflow side, is intended to optimize the organization of the flow, minimizing blood turbulence and favoring pressure recovery.4,5

The 80 degrees opening angle, in combination with curved leaflets has been specifically established to minimize turbulence, while the short travel arc contributes to low regurgitation levels and low energy loss.4,5

The unique two open-chimney design ensures an effective passive washing of the hinges even when the valve is closed, avoiding blood stasis and hemolysis at the same time.4,6
The excellent hemodynamic performance of Bicarbon valves are well proven in the published scientific literature.

In vitro comparisons with other commercially available valves have shown that Bicarbon are among the best performing valves with respect to all the relevant parameters:

- pressure gradients
- leakage volume
- energy loss
- velocity profiles
- shear stress distribution

This is confirmed in small aortic annuli, even when comparing among valves specifically designed for improved hemodynamic performance.

* Test performed with Sheffield pulse duplicator. Valves fitting a 21 mm diameter valve holder.

6. Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage. Steegers, Reul, Rau - J Heart Valve Dis 1999; 8: 312-323
The hydrodynamic efficiency of Bicarbon valves is reflected by the excellent hemodynamic results reported in the published in-vivo evaluations.

Comparative evaluation of small-size LivaNova Bicarbon Slimline and St. Jude HP heart valve prosthesis.

* Bicarbon standard model
Overline for Top Hemodynamic performance

To further optimize hemodynamics, especially in small aortic annuli, LivaNova features in its Bicarbon portfolio the Overline aortic prosthesis, a truly totally supra-annular model. A totally supra annular positioning can provide an advantage of 1 to 2 sizes over intra-annular valves.

100% ORIFICE TO ANNULUS MATCH

Overline improves effective valve orifice area thanks to a 100% orifice to annulus match, thus contributing to reduce the risk of PPM.

"An 18 mm or 20 mm valve was implanted in more than 80% of the present patients [...] However, no cases of PPM were observed, despite the use of 18 and 20 mm valves."

Hemodynamic function on echocardiography before and at 12 months after surgery, by labeled valve size.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Time</th>
<th>Total pts</th>
<th>Valve size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=102)</td>
<td>18 (n=27)</td>
<td>20 (n=51)</td>
</tr>
<tr>
<td>PPG (mmHg)</td>
<td>Preoperative</td>
<td>67 ± 29</td>
<td>78 ± 24</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>24 ± 8</td>
<td>26 ± 8</td>
</tr>
<tr>
<td>MPG (mmHg)</td>
<td>Preoperative</td>
<td>42 ± 19</td>
<td>50 ± 17</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>13 ± 5</td>
<td>15 ± 6</td>
</tr>
</tbody>
</table>

MPG: Mean pressure gradient; PPG: Peak pressure gradient

“The in vivo data showed excellent hemodynamic results for all valve sizes [...]. In addition, the EOA was significantly increased, from 0.80 ± 0.41 cm² before surgery to 2.01 ± 0.26 cm² after 12 months.”

11. Supra annular model as defined by International Standard for Cardiovascular implants - Cardiac valve Prostheses-Part 2. ISO 5840–2:2015(E)
15. Results of aortic valve replacement with the supra-annular Sorin Bicarbon Overline prosthesis. Reyes et al. - J Heart Valve Dis 2012; 21 (3): 358–63
Detailed Thromboresistance
Bicarbon valves are specifically designed to minimize thrombogenicity:

- Carbofilm coating increases hemocompatibility lowering the risk of thombus formation.\(^1\)\(^2\)\(^3\)

- Curved leaflets, aerofoil housing profile, optimized leaflets travel arc and opening angle favor a laminar blood flow which reduces shear stress and hemolysis. This results in lower serum levels of lactatedehydrogenase (LDH)\(^16\) as compared to those found for other commercially available valves.\(^17\) A low degree of hemolysis leads to less platelet activation and consequently less risk of clots.\(^19\)\(^20\)

- The unique two open-chimney design ensures an effective passive washing of the hinges avoiding blood stasis and hemolysis at the same time.\(^4\)\(^6\)

This is why Bicarbon valves have shown a very low incidence of thrombosis and thromboembolic events in up to 17 years of published follow up.\(^20\)\(^21\)\(^22\)

Thrombo-embolic events

<table>
<thead>
<tr>
<th></th>
<th>AVR</th>
<th>MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azarnouch</td>
<td>0.73</td>
<td>0.24</td>
</tr>
<tr>
<td>Misawa</td>
<td>0.5</td>
<td>0.19</td>
</tr>
<tr>
<td>Celiento</td>
<td>0.39</td>
<td>0.4</td>
</tr>
</tbody>
</table>

LOWERING the INtensity of oral anticoagulant Therapy in patients with bileaflet mechanical aortic valve replacement: Results from the “LOWERING-IT” Trial.

As a further proof of its excellent thromboresistance, Bicarbon is backed by the ‘LOWERING-IT’ trial,23 an independent prospective controlled randomized study which has established for the first time that a lower INR target (1.5–2.5) is safe and feasible in low risk patients after aortic valve replacement.

Flow diagram of the LOWERING-IT trial

396 patients included in the analysis

<table>
<thead>
<tr>
<th>CONVENTIONAL-INR GROUP</th>
<th>LOW-INR GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTS assigned to INR 2.0–3.0</td>
<td>PTS assigned to INR 1.5–2.5</td>
</tr>
<tr>
<td>199 pts. Included in the Analysis</td>
<td>197 pts. Included in the Analysis</td>
</tr>
</tbody>
</table>

Outcome events

<table>
<thead>
<tr>
<th></th>
<th>LOW-IN (n=197)</th>
<th>CONVENTIONAL-INR (n= 199)</th>
<th>P</th>
<th>OR (95% exact CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thromboembolic events</td>
<td>1</td>
<td>3</td>
<td>.62 ns</td>
<td>0.33 (0.006–4.20)</td>
</tr>
<tr>
<td>Hemorrhagic events</td>
<td>6</td>
<td>16</td>
<td>.04</td>
<td>0.36 (0.11–0.99)</td>
</tr>
</tbody>
</table>

“LOWERING-IT trial established that the proposed LOW-INR target is safe and feasible in low-risk patients after bileaflet aortic mechanical valve replacement. It results in similar thrombotic events and in a significant reduction of bleeding occurrence when compared to the conventional anticoagulation regimen.”23

23. LOWERing the INtensity of oral anticoagulant Therapy in patients with bileaflet mechanical aortic valve replacement: Results from the “LOWERING-IT” Trial. Torella et al. - Am Heart J 2010;160:171–8
Detailed safety and durability

Every single detail of the Bicarbon valve is carefully engineered to offer outstanding performance to last over time.

- The Titanium housing, with twice the structural stability of solid Pyrolytic Carbon housings, ensures correct leaflet retention and functioning.
- The unique two open-chimney design of the hinges avoid blood stasis and hemolysis minimizing the risk of structural valve failure and clinical complications.
- The Carbofilm™ coated PET fabric sewing ring provides a safe anchorage favoring a gentle tissue ingrowth that minimizes the risk of perivalvular leaks and pannus formation at the same time.
- The unique, proprietary ‘rolling without sliding’ hinge mechanism, characterized by a constantly varying single point of contact between the pivot and the housing, minimizes friction and wear and consequently the risk of structural valve deterioration.

The Bicarbon solution versus competitive valves

Friction and wear are minimized by the constantly varying single point of contact between the pivot and the housing.

The Titanium housing ensures correct leaflet retention with twice the structural stability and only half the width of solid Pyrolytic Carbon housings. Biocompatibility is assured by the total Carbofilm™ coating.
Detailed performance for excellent clinical outcomes

Bicarbon has proven to be a safe, high performing valve with excellent clinical outcomes in the long term follow up.20,21,22,24

Single center experience with the LivaNova Bicarbon prosthesis: A 17-year clinical follow-up

“The Bicarbon Prosthesis has shown excellent results in terms of clinical improvement and freedom from valve-related complications, even up to 17 years after AVR and MVR.”22

Linearized rate of adverse events (% PT-YR)

NYHA CLASS

Mean INR at last FU: AVR: 2.6±0.5 - MVR: 2.7±0.4

AVR MVR

Actuarial Survival and Freedom from valve-related deaths

0 2 4 6 8 10 12 14 16 18

AVR

MVR

% Freedom

Time (years)

Valve-related deaths

Overall deaths

Freedom at 17 yrs (%)

90 ± 5

60 ± 3

Freedom at 17 yrs (%)

92 ± 4

62 ± 6

Numbers on the horizontal axis indicate patients at risk at each time interval

The Bicarbon Prosthesis continues to perform satisfactorily even in the long term with low incidence of valve-related mortality and morbidity confirming to be an extremely reliable and durable mechanical valve substitute.”

“In the present series, a low incidence of embolic events was observed [...] indicating that the innovative changes incorporated into the Bicarbon Prosthesis design, improving transprosthetic flow and reducing turbulence, might positively influence its thrombogenicity”.

“We have also found that other major postoperative complications, [...] are extremely uncommon after AVR and MVR with the Bicarbon Prosthesis”.

“[...] no cases of structural failure were recorded”.

“The present study gives additional evidence of low rates of valve-related complications after Bicarbon valve Implantation. [...] we maintain the INR between 1.8 and 3.0. The rate of thromboembolic events in this study is excellent and the rates of bleeding complications are also acceptable.”

“This single-center study of a 15-year follow-up of the Bicarbon prosthetic heart valve shows excellent clinical results associated with a low incidence of valve-related mortality and morbidity”.
Application

- **BICARBON OVERLINE**
 - TOTALLY SUPRA-ANNULAR AORTIC VALVE
 - Sizes 16–24 mm
 - **Aortic procedures**
 - Normal sinus area
 - Small aortic annulus
 - Severely calcified aortic annulus
 - Double valve replacement
- **BICARBON SLIMLINE**
 - SUPRA-ANNULAR AORTIC VALVE
 - Sizes 17–27 mm
 - **Aortic procedures**
 - Low coronary ostia
 - Narrow, rigid aortic annulus
 - Small, inflexible aorta (Sinus of Valsalva)

Implantation Consideration

- **BICARBON OVERLINE**
 - Totally supra-annular placement
 - allows for largest valve possible
 - increases ease and safety of DVR procedure
 - Orientation of the implanted valve facilitated by a Polyacetal sleeve mounted inside the sewing cuff, which maintains torque at a constant level
 - Three orientation markers for suture spacing
 - Soft, pliable cuff for an easy handling and to better conform to the patient’s annulus.
 - Special sizers allow surgeon to assess position of valve within sinus area and clearance of coronaries before implantation
- **BICARBON SLIMLINE**
 - Indicated in cases in which the external valve dimension needs to be reduced in relation to the available flow area
 - Orientation of the implanted valve facilitated by a Polyacetal sleeve mounted inside the sewing cuff, which maintains torque at a constant level
 - Three orientation markers for suture spacing
 - Soft, pliable cuff for an easy handling and to better conform to the patient’s annulus.

Clinical Considerations

- **BICARBON OVERLINE**
 - Advanced design optimized for top hemodynamic performance
 - Size upgrades further improve valve hemodynamics
 - Allows the largest possible orifice of any mechanical valve
 - Alternative to aortic root enlargement
 - Advanced design allows to achieve a laminar blood flow that minimizes the risk of thrombus formation
 - Excellent clinical record for valve-related events
 - Proven safety and durability
- **BICARBON SLIMLINE**
 - Advanced design optimized for top hemodynamic performance
 - Alternative to aortic root enlargement where supra-annular valve will not fit in sinus
 - Advanced design allows to achieve a laminar blood flow that minimizes the risk of thrombus formation
 - Excellent clinical record for valve-related events
 - Proven safety and durability

Valve placement in-situ
BICARBON OVERLINE

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>TAD</th>
<th>ID</th>
<th>OH</th>
<th>GOA</th>
<th>EOA**</th>
<th>Catalog N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15.2</td>
<td>15.2</td>
<td>6.0</td>
<td>1.76</td>
<td>0.97</td>
<td>ICV0870</td>
</tr>
<tr>
<td>18</td>
<td>17.2</td>
<td>17.2</td>
<td>6.4</td>
<td>2.27</td>
<td>1.54</td>
<td>ICV0871</td>
</tr>
<tr>
<td>20</td>
<td>19.2</td>
<td>19.2</td>
<td>6.8</td>
<td>2.83</td>
<td>2.07</td>
<td>ICV0872</td>
</tr>
<tr>
<td>22</td>
<td>21.3</td>
<td>21.3</td>
<td>7.2</td>
<td>3.45</td>
<td>2.39</td>
<td>ICV0873</td>
</tr>
<tr>
<td>24</td>
<td>23.3</td>
<td>23.3</td>
<td>7.6</td>
<td>4.14</td>
<td>3.06</td>
<td>ICV0874</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Article</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI cylindrical sizers set</td>
<td>ICV0867</td>
<td>5 sizers</td>
</tr>
<tr>
<td>Aortic rotators set</td>
<td>ICV0868</td>
<td>5 aortic rotators</td>
</tr>
<tr>
<td>UNI handle</td>
<td>ICV0664</td>
<td>1 universal bandable handle to be used with all sizers</td>
</tr>
<tr>
<td>Valve holder handle</td>
<td>P0593</td>
<td>1 Nitinol bandable handle</td>
</tr>
<tr>
<td>Occluder tester</td>
<td>VT-100</td>
<td>10 disposable occluder tester (provided sterile)</td>
</tr>
<tr>
<td>Empty tray</td>
<td>ICV0736</td>
<td>1 orange empty tray compatible with BICARBON OVERLINE accessories</td>
</tr>
</tbody>
</table>

BICARBON SLIMLINE

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>TAD</th>
<th>ID</th>
<th>OH</th>
<th>GOA</th>
<th>EOA*</th>
<th>Catalog N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>17.2</td>
<td>15.2</td>
<td>6.0</td>
<td>1.76</td>
<td>1.01</td>
<td>ICV0934</td>
</tr>
<tr>
<td>19</td>
<td>19.2</td>
<td>17.2</td>
<td>6.4</td>
<td>2.27</td>
<td>1.50</td>
<td>ICV0935</td>
</tr>
<tr>
<td>21</td>
<td>21.3</td>
<td>19.2</td>
<td>6.8</td>
<td>2.83</td>
<td>1.90</td>
<td>ICV0936</td>
</tr>
<tr>
<td>23</td>
<td>23.4</td>
<td>21.3</td>
<td>7.2</td>
<td>3.45</td>
<td>2.39</td>
<td>ICV0937</td>
</tr>
<tr>
<td>25</td>
<td>25.6</td>
<td>23.3</td>
<td>7.6</td>
<td>4.14</td>
<td>3.06</td>
<td>ICV0938</td>
</tr>
<tr>
<td>27</td>
<td>28.0</td>
<td>25.6</td>
<td>8.0</td>
<td>5.0</td>
<td>3.45</td>
<td>ICV0939</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Article</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI cylindrical sizers set</td>
<td>ICV0728</td>
<td>6 universal cylindrical sizers</td>
</tr>
<tr>
<td>UNI profile sizers set</td>
<td>ICV0730</td>
<td>6 universal profile sizers</td>
</tr>
<tr>
<td>Aortic rotators set</td>
<td>ICV0950</td>
<td>6 aortic rotators</td>
</tr>
<tr>
<td>UNI handle</td>
<td>ICV0664</td>
<td>1 universal bandable handle to be used with all sizers</td>
</tr>
<tr>
<td>Valve holder handle</td>
<td>P0593</td>
<td>1 Nitinol bandable handle</td>
</tr>
<tr>
<td>Occluder tester</td>
<td>VT-100</td>
<td>10 disposable occluder tester (provided sterile)</td>
</tr>
<tr>
<td>Empty tray</td>
<td>ICV0736</td>
<td>1 orange empty tray</td>
</tr>
</tbody>
</table>

Legend

- **TAD** = Tissue Annulus Diameter (mm)
- **ID** = Internal Diameter (mm)
- **OH** = Orifice Height (mm)
- **GOA** = Geometric Orifice Area (cm²)
- **EOA** = In vivo Effective Orifice Area (cm²)

* For Bicarbon Overline reported EOA based on reference 1 are a two sizes up-sized estimate; for Bicarbon Slimline reported EOA based on reference 1 are a one size up-sized estimate.

© 2017 LivaNova all rights reserved.
BICARBON MECHANICAL VALVES

BICARBON FITLINE AORTIC

INTRA-ANNULAR AORTIC VALVE
Sizes 19–31 mm

- Advanced design optimized for top hemodynamic performance
- Advanced design allows to achieve a laminar blood flow that minimizes the risk of thrombus formation
- Excellent clinical record for valve-related events
- Proven safety and durability

Application

- Aortic procedures
- Low coronary ostia
- Narrow, rigid aortic sinus
- Large annulus
- Redo AVR

Implantation Consideration

- Orientation of the implanted valve facilitated by a Polyacetal sleeve mounted inside the sewing cuff, which maintains torque at a constant level
- Three orientation markers for suture spacing
- Soft, pliable cuff for an easy handling and to better conform to the patient’s annulus

Clinical Considerations

- Advanced design optimized for top hemodynamic performance
- Advanced design allows to achieve a laminar blood flow that minimizes the risk of thrombus formation
- Excellent clinical record for valve-related events
- Proven safety and durability

BICARBON FITLINE MITRAL

INTRA-ANNULAR MITRAL VALVE
Sizes 19–33 mm

- Mitral valve replacement with or without mitral leaflet preservation
- Double valve replacement

Application

- Aortic procedures
- Low coronary ostia
- Narrow, rigid aortic sinus
- Large annulus
- Redo AVR

Implantation Consideration

- Orientation of the implanted valve facilitated by a Polyacetal sleeve mounted inside the sewing cuff, which maintains torque at a constant level
- Four orientation markers for suture spacing
- Soft, pliable cuff for an easy handling and to better conform to the patient’s annulus

Clinical Considerations

- Advanced design optimized for top hemodynamic performance
- Advanced design allows to achieve a laminar blood flow that minimizes the risk of thrombus formation
- Excellent clinical record for valve-related events
- Proven safety and durability

Valve placement *in-situ*
BICARBON MECHANICAL VALVES

BICARBON FITLINE AORTIC

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>TAD (mm)</th>
<th>ID (mm)</th>
<th>OH (mm)</th>
<th>GOA (cm²)</th>
<th>EOA¹ (cm²)</th>
<th>Catalog N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19.0</td>
<td>15.2</td>
<td>6.0</td>
<td>1.76</td>
<td>0.97</td>
<td>ICV0917</td>
</tr>
<tr>
<td>21</td>
<td>21.2</td>
<td>17.2</td>
<td>6.4</td>
<td>2.27</td>
<td>1.54</td>
<td>ICV0918</td>
</tr>
<tr>
<td>23</td>
<td>23.4</td>
<td>19.2</td>
<td>6.8</td>
<td>2.83</td>
<td>2.07</td>
<td>ICV0919</td>
</tr>
<tr>
<td>25</td>
<td>25.6</td>
<td>21.3</td>
<td>7.2</td>
<td>3.45</td>
<td>2.39</td>
<td>ICV0920</td>
</tr>
<tr>
<td>27</td>
<td>27.8</td>
<td>23.3</td>
<td>7.6</td>
<td>4.14</td>
<td>3.06</td>
<td>ICV0921</td>
</tr>
<tr>
<td>29</td>
<td>30.0</td>
<td>25.6</td>
<td>8.0</td>
<td>5.00</td>
<td>3.45</td>
<td>ICV0922</td>
</tr>
<tr>
<td>31</td>
<td>32.0</td>
<td>25.6</td>
<td>8.0</td>
<td>5.00</td>
<td>3.45</td>
<td>ICV0923</td>
</tr>
</tbody>
</table>

BICARBON FITLINE MITRAL

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>TAD (mm)</th>
<th>ID (mm)</th>
<th>OH (mm)</th>
<th>GOA (cm²)</th>
<th>Catalog N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19.0</td>
<td>15.2</td>
<td>6.0</td>
<td>1.76</td>
<td>ICV0924</td>
</tr>
<tr>
<td>21</td>
<td>21.2</td>
<td>17.2</td>
<td>6.4</td>
<td>2.27</td>
<td>ICV0925</td>
</tr>
<tr>
<td>23</td>
<td>23.4</td>
<td>19.2</td>
<td>6.8</td>
<td>2.83</td>
<td>ICV0926</td>
</tr>
<tr>
<td>25</td>
<td>25.6</td>
<td>21.3</td>
<td>7.2</td>
<td>3.45</td>
<td>ICV0927</td>
</tr>
<tr>
<td>27</td>
<td>27.8</td>
<td>23.3</td>
<td>7.6</td>
<td>4.14</td>
<td>ICV0928</td>
</tr>
<tr>
<td>29</td>
<td>30.0</td>
<td>25.6</td>
<td>8.0</td>
<td>5.00</td>
<td>ICV0929</td>
</tr>
<tr>
<td>31</td>
<td>32.0</td>
<td>25.6</td>
<td>8.0</td>
<td>5.00</td>
<td>ICV0930</td>
</tr>
<tr>
<td>33</td>
<td>34.0</td>
<td>25.6</td>
<td>8.0</td>
<td>5.00</td>
<td>ICV0931</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Article Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI cylindrical sizers set</td>
<td>ICV0662</td>
<td>8 universal cylindrical sizers</td>
</tr>
<tr>
<td>UNI profile sizers set</td>
<td>ICV0663</td>
<td>8 universal profile sizers</td>
</tr>
<tr>
<td>Rotators set</td>
<td>ICV0732</td>
<td>7 aortic rotators + 8 mitral rotators</td>
</tr>
<tr>
<td>UNI handle</td>
<td>ICV0664</td>
<td>1 universal bandable handle to be used with all sizers and mitral rotators</td>
</tr>
<tr>
<td>Valve holder handle</td>
<td>P0593</td>
<td>1 Nitinol bandable handle</td>
</tr>
<tr>
<td>Occluder tester</td>
<td>VT-100</td>
<td>10 disposable occluder tester (provided sterile)</td>
</tr>
<tr>
<td>Empty tray</td>
<td>ICV0735</td>
<td>1 gray empty tray</td>
</tr>
</tbody>
</table>

Legend

- **TAD** = Tissue Annulus Diameter (mm)
- **ID** = Internal Diameter (mm)
- **OH** = Orifice Height (mm)
- **GOA** = Geometric Orifice Area (cm²)
- **EOA** = In vivo Effective Orifice Area (cm²)

Please always refer to the Instructions For Use (IFU) manual provided with each product for detailed information, warnings, precautions and possible adverse side effects. © 2017 LivaNova all rights reserved.

www.livanova.com
Bicarbon range

Bicarbon Overline Bicarbon Slimline Bicarbon Fitline Aortic

Bicarbon Fitline Mitral

www.livanova.com

Manufactured by:
Sorin Group Italia Srl
A wholly-owned subsidiary of LivaNova PLC
Via Crescentino - 13040 Saluggia (VC) Italy
Tel: +39 0161 487472 - Fax: +39 0161 487316
info.cardiacsurgery@livanova.com

Refer to the information for Use provided with each product for detailed information, warnings, precautions and possible adverse side effects.

© 2017 LivaNova all rights reserved.